Tetrahedron Letters No. 17, pp 1501 - 1504, 1978. Pergamon Press. Printed in Great Britain.

photochemistry of α -oxo-oximes. part 2.¹ irradiation of 4-ethoxyimino-2,6-dimethylheptan-3-one: a novel type ii cyclobutanol formation

P. Baas and H. Cerfontain*

Laboratory for Organic Chemistry, University of Amsterdam Nieuwe Achtergracht 129, Amsterdam, The Netherlands

(Received in UK 20 February 1978; accepted for publication 9 March 1978)

Irradiation of 4-ethoxyimino-2,6-dimethylheptan-3-one (<u>1</u>) with λ 313 nm in the presence of benzophenone as triplet sensitizer ($E_T = 69 \text{ kcal mol}^{-1}$;² 91% of the incident radiation was absorbed by the sensitizer) in acetonitrile solution resulted only in the formation of a photostationary state (pss) mixture of the (<u>E</u>)- and (<u>Z</u>)-isomer.³

Upon direct irradiation of <u>1</u> (0.06-0.11M) with λ 313 or 366 nm in various solvents and subsequent GLC analysis of the photolysate three products (<u>2-4</u>) were obtained. The amounts decrease in the order <u>4>3>>2</u>. Upon direct ¹H NMR analysis of the photolysate only the compounds <u>2</u> and <u>3</u> (and not <u>4</u>) were found, with <u>3</u> being the larger component. Further, the GLC peak of <u>4</u> was rather broad and irregular in shape. Accordingly, it was concluded that <u>4</u> is not a photochemical product, but arises by thermal decomposition of <u>2</u> and <u>3</u> in the gas chromatograph.

1501

Product 2 was assigned to be (Z)-2-hydroxy-2-isopropyl-3,3-dimethylcyclobutanone oxime O-ethyl ether on the following spectral data: 4 IR (cm⁻¹, CHCl₃) 1705 (C=N) and 1045 (C-O); ¹H NMR (δ , CCl₄) 3.94 (q, 2H, J=7.3 Hz, CH₂O), 2.19 (d, 1H, J_{AB}=14.5 Hz, CH_A), 2.10 (br, 1H, OH), 2.06 (d, 1H, J_{AB}=14.5 Hz, CH_B), 1.98 [m, 1H, J=7.0 Hz, CH(CH₃)₂], 1.16 (t, 3H, J=7.2 Hz, $C\underline{H}_{3}CH_{2}$), 1.12 (s, 3H, $C\underline{H}_{3}C$), 1.03 (s, 3H, $C\underline{H}_{3}C$), 0.91 [d, 3H, J=7.0 Hz, $CH(C\underline{H}_{3})_{2}$], 0.87 [d, 3H, J=7.0 Hz, $CH(CH_3)_2$]. Product 3 was assigned to be (E)-2-hydroxy-2-isopropyl-3,3-dimethylcyclobutanone oxime O-ethyl ether on the following spectral data: 4 IR (cm $^{-1}$, CHCl₃) 3610 (free OH), 3420 (br, assoc. OH), 2975, 2940, 2880, 1680 (C=N), 1465, 1385, 1145, 1090, 1040 (C-O), 945, 890, 870, 855; ¹H NMR (δ , CCl₄) 3.93 (q, 2H, J=7.0 Hz, CH₂O), 2.38 (d, 1H, J_{aB}=16.0 Hz, CH_a), 2.20 (br, 1H, OH), 2.14 (d, 1H, J_{aB}=16.0 Hz, CH_B), 1.95 [m, 1H, J=7.0 Hz, $(\underline{H}_{3}(CH_{3})_{2}]$, 1.11 (t, 3H, J=7 Hz, $(\underline{H}_{3}CH_{2})$, 1.11 (s, 3H, $(\underline{H}_{3}C)$, 1.03 (s, 3H, $(\underline{H}_{3}C)$, 0.94 [d, 3H, J=7.0 Hz, CH(CH₂)₂], 0.85 [d, 3H, J=7.0 Hz, CH(CH₂)₂]; MS (70 eV) 154 (10), 82 (36), 71 (52), 55 [15, (82-HCN): m_{obs}^{*} 36.91 and m_{calc}^{*} 36.89], 43 [100, (71-CO)⁺: m_{obs}^{*} 26.08 and m_{calc}^{*} 26.04] 42 [26, $(43-H_2)^+$: m_{obs}^* 39.09 and m_{calc}^* 39.09]. Product <u>4</u> was assigned to be 1-(3,3-dimethyl--2-aza-1-cyclobutenyl)-2-methylpropanone on the following spectral data: 4,5 IR (cm⁻¹, CHCl₃) 3020, 2975, 2940, 2880, 1710 (C=O), 1470, 1026; ¹H NMR (δ, CCl_a) 2.98 (m, 1H, J=7 Hz, C<u>H</u>C=O), 2.35 (s, 2H, CH_2), 1.25 [s, 6H, $(CH_3)_2$], 0.97 [d, 6H, J=7 Hz, $CH(CH_3)_2$]; MS (70 eV) 153 (5), 83 (8), 82 [19, (110-co)⁺: m_{obs}^{*} 61.19 and m_{calc}^{*} 61.13], 71 [50, $(M-C_5H_8N)^{+}$: m_{obs}^{*} 33.01 and m^{*}_{calc} 32.95, 56 (24), 43 [100, (71-C0)⁺: m^{*}_{obs} 26.07 and m^{*}_{calc} 26.04].

The variation in the amounts of starting material and the products $(\underline{Z})-\underline{1}$, $\underline{2}$ and $\underline{3}$ upon direct irradiation of 0.055M (\underline{E})- $\underline{1}$ with λ 366 nm in acetonitrile solution with the irradiation time

No. 17

is shown in the Figure.⁶ The amounts of $\underline{2}$ and $\underline{3}$ were calculated from the amounts of $\underline{2-4}$ determined by GLC on the assumption that the rate constants for the conversion of $\underline{2}$ and $\underline{3}$ into $\underline{4}$ are the same. The rate ratio for the formation of $\underline{3}$ to $\underline{2}$ is ca. 7. The pss of $\underline{1}$ was reached after two hours and has an E/Z value of 2.3.

The formation of the cyclobutanol products 2 and 3 can be explained in terms of Scheme 1. The cyclobutanol formation accompanying type II photoelimination from monoketones involves an 1,4-biradical intermediate.⁷ A similar type of intermediate is formed from 1-pheny1-1,2-

-diones containing γ -hydrogens.⁸ The failure of these diketones to undergo type II photoelimination probably arises from the perpendicular orientation of the C(3) p orbital relative to the C(4)-C(5) σ bond in the biradical⁷ (for the numbering see Scheme 1). In fact, with α -oxo-oxime ether <u>1</u> also no photoelimination products were observed.

The formation of 4-oxopentanenitrile upon irradiation of 3-acetyloxyiminopentan-2-one (Scheme 2) is another example of intramolecular γ -H abstraction with an α -oxo-oxime derivative. The N-O bond of oxime esters is thermally labile.³ The initially formed cyclobutanol product therefore decomposes leading eventually to the nitrile.³ The photoreactions other than (<u>E</u>)-(<u>Z</u>) isomerization of the α -oxo-oxime ethers and esters proceed from the S₁(n- π^*) excited state.³

The quantum yield for cyclobutanol formation (2+3) from <u>1</u> was estimated for acetonitrile as solvent to be <u>ca</u>. 0.02.³ Yang reported a similar value for the triplet state cyclobutanol formation of aliphatic ketones.⁹ The material balance for the 366 nm photoreaction of <u>1</u> in acetonitrile is 92%. This implies that the photodecomposition by initial N-O bond cleavage (and the type II photoelimination) is (at most) a minor process.

Scheme 2

The ratio of the rates of formation of $\underline{3}$ to $\underline{2}$ is large relative to the (E/Z)_{pss} ratio (viz. 7 vs. 2.3)¹⁰ This may be rationalized in terms of the difference in conformation of the two geometrical isomers of $\underline{1}$ (see the Scheme). The (E)-isomer has the planar s-trans conformation;³ in this conformation the γ -hydrogen of the isobutyl group is ideally situated for the 1,5--hydrogen transfer to the excited carbonyl group. The (Z)-isomer exists in the non-planar s-trans conformation;³ the isobutyl group is moved out of the position required for γ -H abstraction because of steric interaction between the oxime oxygen and the isopropyl group. This renders the rate of cyclobutanol formation lower for (Z)-1 than (E)-1 and thus explains the relatively high value for the ratio of the rates of the formation of $\underline{3}$ to $\underline{2}$.

References and notes

- 1. Part 1, P. Baas and H. Cerfontain, J. Chem. Soc. Perkin Trans II, 1977, 1351.
- 2. S.L. Murov, "Handbook of Photochemistry", Dekker, New York, 1973, p. 3.
- 3. P. Baas and H. Cerfontain, to be published.
- 4. The IR, ¹H NMR and mass spectra were recorded on a Perkin Elmer 125, a Varian HA-100 and an AEI MS-902 apparatus respectively.
- 5. The alternative structure 3,3,5-trimethyl-4-oxohexanenitrile is rejected on the following two arguments. First the absence of the C=N stretching frequency at 2240 cm⁻¹ and the presence of a very weak C=N absorption at 1603 cm⁻¹ and second the occurrence of mass peak m/e 56 which is easy to explain with structure 4, but very difficult with the alternative structure.
- The amounts were determined from the GLC peak areas and were corrected for the difference in molecular weight.
- 7. P.J. Wagner, Acc. Chem. Res., 4 , 168 (1971).
- P.J. Wagner, R.G. Zepp, K.-C. Liu, M. Thomas, T.-J. Lee, and N.J. Turro, J. Amer. Chem. Soc., 98, 8125 (1976).
- 9. N.C. Yang and S.P. Elliott, J. Amer. Chem. Soc., 91, 7550 (1969).
- 10. The molar extinction coefficients at 366 nm are nearly the same for (\underline{E}) and (\underline{Z}) $\underline{1}$.